Multivariate Testing 101: A Scientific Method Of Optimizing Design
In a previous article on Smashing Magazine, I described A/B testing and various resources related to it. I have also covered the basics of multivariate testing in the past, yet in this post I’ll go deeper in the technical details of multivariate testing which is similar to A/B testing but with crucial differences.
In a multivariate test, a Web page is treated as a combination of elements (including headlines, images, buttons and text) that affect the conversion rate. Essentially, you decompose a Web page into distinct units and create variations of those units. For example, if your page is composed of a headline, an image and accompanying text, then you would create variations for each of them. To illustrate the example, let’s assume you make the following variations:
- Headline: headline 1 and headline 2
- Text: text 1 and text 2
- Image: image 1 and image 2
The scenario above has three variables (headline, text and image), each with two versions. In a multivariate test, your objective is to see which combination of these versions achieves the highest conversion rate. By combinations, I mean one of the eight (2 × 2 × 2) versions of the Web page that we’ll come up with when we combine variations of the sections:
- Headline 1 + Text 1 + Image 1
- Headline 1 + Text 1 + Image 2
- Headline 1 + Text 2 + Image 1
- Headline 1 + Text 2 + Image 2
- Headline 2 + Text 1 + Image 1
- Headline 2 + Text 1 + Image 2
- Headline 2 + Text 2 + Image 1
- Headline 2 + Text 2 + Image 2
In multivariate testing, you split traffic between these eight different versions of the page and see which combination produces the highest conversion rate — just like in A/B testing, where you split traffic between two versions of a page.
Getting Started With Multivariate Testing
To create your first multivariate test, first choose a tool or framework that supports multivariate testing. You can use one of the tools listed in the section “Tools” in the end of this article. Please note that not all A/B testing tools support multivariate testing, so make sure your tool of choice allows it.
Once you’ve decided which tool to use, choose which sections to include in the test. As you know, a Web page can contain tens or hundreds of different sections (footer, headline, sidebar, log-in form, navigation buttons, etc.). You cannot include all of these sections in the test; creating variations for all of them would be an enormous task (and, as you’ll read below, the traffic requirements for the test will grow exponentially with each new section). Narrow it down to the few sections of the page that you think are most important to the conversion goal.
The following parts of a page (listed in order of importance) are typically included in a multivariate test:
- Headline and heading,
- Call-to-action buttons (color, text, size, placement),
- Text copy (content, length, size),
- Image (type, placement, size),
- Form length.
The Difference Between A/B Testing And Multivariate Testing
Conceptually, the two techniques are similar, but there are crucial differences. First and foremost, the traffic requirements are different. As I said, the number of combinations that need to be tested grows exponentially in a multivariate test. You can test three or four versions in an A/B test and tens or hundreds of versions in a multivariate test. Clearly, then, a lot of traffic — and time — is required to arrive at meaningful results.
For example, if you have three sections with three variations each, the number of combinations is 27. Add another section with three variations, and the total number of combinations jumps to 81. If you want meaningful results, you can’t keep adding sections to the test. Be selective. A good rule is to limit the total number of combinations to 25 or fewer.
Use A/B testing for large scale changes, not to refine or optimize existing designs. Image by Meet the Chumbeques |
Another difference is in how these techniques are used. A/B testing is usually reserved for large radical changes (such as completely changing a landing page or displaying two different offers). Multivariate testing is used to refine and optimize an existing design. For the mathematically inclined, A/B testing is used to optimize for a global optimum, while multivariate testing is used to optimize for a local optimum. One advantage of multivariate testing over A/B split testing is that it can tell you which part of the page is most influential on conversion goals. Say you’re testing the headline, text and image on your landing page. How do you know which part has the most impact? Most multivariate testing tools will give you a metric, called the “impact factor,” in their reports that tells you which sections influence the conversion rate and which don’t. You don’t get this information from A/B testing because all sections are lumped into one variation. Types Of Multivariate TestsBased on how you distribute traffic to your combinations, there are several types of multivariate tests (MVT): Full factorial testing Record and compare the resulting traffic for each tested version. Image by ItoWorld |
|
Partial or fractional factorial testing Taguchi testing Do’s And Don’tsI have observed hundreds of multivariate tests, and I have seen many people make the same mistakes. Here is some practical advice, direct from my experience. Don’ts
Do’s
|
Before testing, get a clear idea of how much traffic you’ll need in order to get statistically significant results. I’ve seen people add tens of sections to a page that gets just 100 visitors per day. Significant results from such a test would take months to accumulate. I suggest using a calculator, such as this A/B split and multivariate testing duration calculator, to estimate how much traffic your test will require. If it’s more than what’s acceptable, reduce some sections. Case StudiesA lot of A/B testing case studies are on the Web, but unfortunately, finding multivariate test case studies is still difficult. So, I scoured the Internet and compiled relevant ones. Software Download Case Study: downloads increased by 60% Microsoft Multivariate Testing Case Study SiteSpect Case Studies Maxymiser Case Studies Look Inside a 1,024-Recipe Multivariate Experiment Multivariate testing of an email newsletter Multivariate Testing Tools And ResourcesToolsGoogle Website Optimizer Visual Website Optimizer WhichMVT Enterprise testing tools ResourcesExpert Guide to Multivariate Testing Success, by Jonathan Mendez Fail Faster With Multivariate Testing (PDF) Online Testing Vendor Landscape Lessons Learned from 21 Case Studies in Conversion Rate Optimization Related postsYou may be interested in the following related articles:
(al) © Paras Chopra for Smashing Magazine, 2011. | Permalink | Post a comment | Smashing Shop | Smashing Network | About Us |